An Improved KNN Text Classification Algorithm Based on Clustering

نویسندگان

  • Yong Zhou
  • Youwen Li
  • Shixiong Xia
چکیده

The traditional KNN text classification algorithm used all training samples for classification, so it had a huge number of training samples and a high degree of calculation complexity, and it also didn’t reflect the different importance of different samples. In allusion to the problems mentioned above, an improved KNN text classification algorithm based on clustering center is proposed in this paper. Firstly, the given training sets are compressed and the samples near by the border are deleted, so the multipeak effect of the training sample sets is eliminated. Secondly, the training sample sets of each category are clustered by k-means clustering algorithm, and all cluster centers are taken as the new training samples. Thirdly, a weight value is introduced, which indicates the importance of each training sample according to the number of samples in the cluster that contains this cluster center. Finally, the modified samples are used to accomplish KNN text classification. The simulation results show that the algorithm proposed in this paper can not only effectively reduce the actual number of training samples and lower the calculation complexity, but also improve the accuracy of KNN text classification algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

An Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification

In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...

متن کامل

An Improved KNN Algorithm for Imbalanced Data Based on Local Mean

KNN algorithm is a simple, effective, non-parametric classification, and has been widely used in text classification, pattern recognition, image and spatial classification. Research on improvements about KNN algorithm has broad application prospects and important scientific significance. Based on analysis about classic KNN and its improved algorithms, we find its over-reliance on the choice of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • JCP

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009